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ABSTRACT: This paper presents the numerical method used to solve the nonlinear plasma fluid equations. We have developed 

a fluid plasma model for a microwave plasma CVD reactor used for diamond thin film deposition. This model solves the electron 

and ion continuity equations, momentum transport equation and the Poisson's equation. In these equations we have the 

problem of non-linearity which is solved using the Newton’s method. From these equations, the unknowns computed are 

electron and ion densities (ne,ni), and plasma potential (�). Then the impacts of the hydrogen pressure and microwave power 

density have been studied. Simulation results show a strong effect of these parameters on the species densities distribution in 

the plasma. 

KEYWORDS: Numerical method, fluid plasma model, microwave plasma CVD reactor, Newton Raphson’s method, Finite 

difference method. 

1 INTRODUCTION 

Deposition reactors and surface treatment assisted by plasma are currently used in many industries. Different types of 

plasmas used in these reactors, those created by microwave discharges. The MPACVD (Microwave Plasma Chemical Vapor 

Deposition) reactor contains a cylindrical resonant cavity. The microwave plasma is coupled with an electromagnetic wave at 

a frequency of excitation 2.45 GHz. Thus, interactions between plasma and electromagnetic waves are governed 

simultaneously by the equations of motion of particles and Maxwell's equations. 

However, discharge plasma has physicochemical phenomena very complex and strongly coupled. Further, it is difficult to 

experimentally observe physical quantities of plasmas inside the reactors. Therefore, the numerical simulation of microwave 

plasma is a necessity [1] to understand the plasma behavior inside the reactor, and to improve the knowledge for deposition 

or etching by means of plasma technology. 

In this present work we try to expose a numerical simulation of a pure hydrogen discharge characteristics, using a fluid 

plasma model. We chose the hydrogen plasma example because diamond film deposition processes often consist of high 

percentages of hydrogen in the discharge [2]. 

To study the physicochemical phenomena of plasma we can use some average values which define in a less complete way 

the state of the system. These sizes are macroscopic parameters defined in every point of the plasma such as: Electron density, 

velocity, pressure tensor, tensor of the flow quantity of heat. 
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This description is the same kind as that which is used in hydrodynamics for the study of ordinary fluid. The quantities 

obtained in this way are governed by the laws of conservation of base such as: conservation of mass, momentum and energy. 

The numerical solution of these equations makes the problem more difficult. There is a hierarchy of physical models 

corresponding to different degrees of approximation of phenomena such as: Fluid models [3], [4], [5], particle-in-cell/Monte 

Carlo (PIC/MC) models [6], [7] and hybrid models [8], [9]. All these modeling approaches have their specific advantages and 

limitations, and therefore, the choice of the model is often dictated by the gas discharge and conditions under study [10]. The 

fluid plasma model are presented and developed in the following sections. 

2 FLUID MODEL FOR A MICROWAVE PLASMA 

The simulation of plasma processes can be based generally on two major approaches. One is the particle approach, which 

is carried out using a particle simulation technique that treats the plasma as a combination of particles (electron, ion, neutral). 

The other approach is the fluid method, which treats the plasma as a fluid and solves the equations obtained from the 

moments of the Boltzmann transport equation [11]. 

However, this model can treat the equations of continuity, transfer momentum and energy. These equations are similar to 

those of the mechanics of fluids with different levels of force terms and collisions terms. 

The Boltzmann equation (BE) is a fundamental equation describing the transport of an ensemble of particles. It is given by 

the following form [11]: 
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Here,  tvrf ,,
��

 is the distribution function, r
�

denotes the spatial position, v
�

 denotes the velocity, and t  denotes the time. 

m is the mass of the particle, F
�

denotes external forces, and the term on the right side of the eq.(1) represents the collision 

term of the Boltzmann equation, is the so-called collision integral which accounts for changes of the electron velocity 

distribution function because of collisions electrons undergo mainly with neutrals but also with other electrons and ions [11]. 

Eq.(1) is a partial integro-differential equation in seven dimensions (three in space, three in velocity and time), and as such 

is extremely difficult to solve [11]. 

The fluid model of plasma, reducing the complexities in the kinetic description, is based on partial differential equations 

which describe the macroscopic quantities such as: density, flux, average velocity, pressure, temperature. Then if we take a 

velocity moments in the Boltzmann equation, The fluid equations are obtained [12]. 
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Here, the particle density n  and the average velocity u
�

 are defined as:  
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The source term on the right side of the continuity equation corresponds to the collision term of the Boltzmann equation. 

First moment of the Boltzmann equation (   vdBEvm 3




� ) gives the momentum transport equation called also equation of 

motion such as: 
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E
�

 and B
�

 are the electric and magnetic fields, respectively. 

Similarly, the energy equation can be found as second moment of the Boltzmann equation: 

(   vdBEvm 32

2

1
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P
�

 is the pressure tensor as    vdfuvuvmP 3





����

�

 , and 
jiji pP   defines scalar pressure p .   is the ratio of 

specific heats. 

This simulation consists of the particle and momentum equations for electrons and ions, which are combined with the 

Poisson's equation. 

In the steady state, the governing equations used in this study are given by [2]: 
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Equation (5) represents the Poisson's equation, which gives the electric interaction between electrons and ions [13], where 

  is the electric potential. 

The electric field E
�

 is derived from a scalar potential, , by: 

 
��

E  (10) 

Equations (6) and (7) represent the electron and ion continuity equations, respectively. Other equations (8) and (9) 

represent the momentum balances for electrons and ions, respectively. 

The drift diffusion approximation reduces the number of partial differential equations included in model by the use of the 

algebraic expression for particle flux (Equations (8) and (9) ) instead of full equation of motion [12], [14]. 

In the above equations, 
en  and 

in  are the electron and ion densities, respectively; 
eJ
�

 and 
iJ
�

 are the electron and ion 

fluxes, respectively; 
ionk  is the inelastic rate constant for ionization; and 

r  is the recombination rate constant  

(�� = 1.0 × 10	
���. 
	
); 
ieD ,
 and 

ie,  are the electron and ion diffusivities and mobilities, respectively. 

3 MODEL FORMULATION IN CYLINDRICAL COORDINATES 

The reactor has a cylindrical geometry. Then we develop the fluid model equations in cylindrical coordinates as: 
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POISSON’S EQUATION : 
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And to calculate the components of the electric field, the following two equations are used: 

 �� = � ��
��  ; �� = � ��

��   (12) 

CONTINUITY EQUATION FOR THE ELECTRONS : 

The two equations (6) and (8) were combined to give the continuity equation for electrons as: 
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(13) 

CONTINUITY EQUATION FOR THE IONS : 

On the other hand, the two equations (7) and (9) were combined to give the continuity equation for ions as: 
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4 DISCRETIZATION OF THE EQUATIONS IN 2D 

We choose the symmetry along the axis (Oz) as shown in Fig. 1. And finite difference techniques are used to discretize the 

cylindrical coordinates form of equations (11) to (14) using in the centered scheme. 

 

 

 

Substrate 

Fig. 1. Mark (O,r,z) corresponding to the symmetry of the reactor 

Using a mesh size of the plasma medium along the two axes (or) and (oz) with steps ∆� and ∆�. In this discretization 

we take an uniform mesh when ∆� = ∆�.  
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DISCRETIZATION OF THE POISON’S EQUATION : 

  0),(),(
)(

)1,(),(2)1,(

)(2

),1(),1(

)(

),1(),(2),1(

0

2

22
















jinjin
e

z

jijiji

ri

jiji

r

jijiji

ie




 
(15) 

CONTINUITY EQUATION FOR ELECTRONS DISCRETIZED: 
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CONTINUITY EQUATION FOR IONS DISCRETIZED: 
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(17) 

In these above equations i and j denote the grid indices in the r and z directions respectively, such as 1 ≤ � ≤ (� � 1) and 

1 ≤ � ≤ (� � 1) where � = �. ∆� ,  = 0 (
!"
#�$#) $%&  = �. ∆   denote the edges of the plasma midium in the r and z 

directions respectively. 

To resolve the coupled equations (15), (16) and (17) we need the boundary conditions at the substrate and the edges of 

the plasma volume: 
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 For the electron density : %'(�, 0) = %'(�, �) = %'(�, �) = 0 

 For the ion density : %((�, 0) = %((�, �) = %((�, �) = 0        (18) 

 For the electric potential : )(�, 0) = )(�, �) = )(�, �) = 0 

And for the centerline where r=0 the following condition is used: 

*+%'
+� ,

(-,.)
= *+%(

+� ,
(-,.)

= *+)
+� ,

(-,.)
 (19)

5 RATE AND TRANSPORT PARAMETERS FOR HYDROGEN GAS 

The different rate and parameters for the hydrogen gas encountered in equations (16) and (17) as /(01 , 2' , 2( , 3' ,  3( ,
�� , $%& %1  are determined by the following relations such as the Arrhenius relationship [2], [15]: 
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ion  denotes the threshold energy for H2 molecule ionization (4(01 = 15.4 78); 

eT  is the electron temperature; 

BK  is the Boltzmann constant; 

And ionA  is the pre-exponential factor which is obtained by approximating the rate constant data at low electron 

temperatures to this relationship [15] (9(01 = 1.0 × 10	
:��. 
	
). 
First, determining the collision frequency for electron-H2 molecule momentum transfer by applying the relation [2]: 

;'1 = 1.44 × 10
< × =�(>?��)
>1(@)  (21)

nT  is the neutral temperature which can be calculated by the translational temperature of H2 gas given by [2]: 

>1(@) = 228.6 + 374.3 × =(1G(/H) + 16.5 × =�(>?��) ± 94.2 (22)

Where  =(1G    the incident is power in (kW) and =�  is the pressure into the reactor cavity in (Torr). And in this study, it is 

assumed that 100% of the microwave power coupled into the reactor is absorbed by the plasma. 

After we can determine the electron diffusivity and mobility respectively as [15]: 
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e  is the elementary charge and em  is the electron mass. 

In other hand we deduce the neutral density %1 by applying the relation betwin transport parameters as [15]: 

2' . %1 = 5.0 × 10<��	
. 
	
 (25)

Then we can easily deduce the parameters 3( and 2(  by applying the following relationships [15]: 
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3( . %1 = 3.5 × 10<< �	
. 8	
. 
	
 (26)

Finally, we can even calculate the volume of plasma depending on the incident power and pressure given by [2]: 

8(K��) = 449.7 + 116.2 × =(1G(/H) � 18.1 × =�(>?��) + 57.1 × =(1G< (/H) + 0.25 × =�<(>?��)
� 5.4 × =�(>?��) × =(1G(/H) ± 15.4 

(27)

6 APPLICATION OF THE NEWTON-RAPHSON METHOD 

Newton’s method is used to solve the nonlinear discretized equations (16) and (17) to obtain plasma electric potential ()), 

electron density (%'), and ion density (%(). 

In this section we will discuss the simplest multidimensional root finding method, Newton-Raphson. If we have a sufficiently 

good initial guess, this method gives us a very efficient means of converging to a root. 

Our problem gives N functional relations to be zeroed, involving variables L(  where: 

i = 1,2, … … , (L + 1)(M + 1), Q(L + 1)(M + 1)R + 1, … … … ,2(L + 1)(M + 1), Q2(L + 1)(M + 1)R + 1, … … , N). 
We set: T = 3(� + 1)(� + 1). 

So the N functional relations are written as: 

U((L
, L<, L�, … … , LV) = 0 where � = 1,2,3, … . . , T (28)

We let W denote the entire vector of values L(  and X denote the entire vector of functionU(. In the neighborhood of x, each 

of the functions can be expanded in Taylor series [16] 

U((L + YL) = U((L) + Z +U(
+L.

YL.
V

.[

+ 0(YL<) (29)

It must resonate step by step as follows: 

 Write the N functional relations:    U((W) = 0 

 Calculate the elements of the Jacobian matrix J:   \(. = �]^
�_`

      (30) 

 Calculate the coordinates of the second member vector:  a( = �U((W)      (31) 

 Write the Newton function as :     L(b
 = L( � ]^(W)
cd^(W)

ce^
     (32) 

 Choose an initial value :    L- 

 While ‖L(b
 � L(‖ ≥ 4 and the number of iterations is less than Thi_ , calculate the new value of L(  starting with L
 

 If ‖L(b
 � L(‖ < 4 then Newton's method converges else it doesn’t converge. 

Fig. 2 shows the organigram of Newton's method followed: 
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Fig. 2. Organigram of the Newton-Raphson method 

7 NUMERICAL RESULTS AND DISCUSSION 

The simulation results shown in this section were all performed in the geometry presented in the Fig.1. The main input 

parameters for this numerical study include the pressure and microwave power. 

In the fig.3 and fig.4 we present the spatial distribution of plasma density related of a given microwave power density. The 

results show that the plasma density is maximal in the plasma volume near the center of the discharge (r=0cm), and decreases 

in the edges and near the substrate region. We see also that the maximum electron density increases with increased power 

density [16]. 
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Fig. 3. Two-dimensional distribution of plasma density at a 

power density of 15.56 W/cm3 

Fig. 4. Two-dimensional distribution of plasma density at a 

power density of 23.97 W/cm3 
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By increasing simultaneously power and gas pressure keeping constant the plasma volume, the evolution of axial and radial 

profiles of electron density, for different power densities, is also calculated and presented in the following figures. 

Fig.5 indicate the evolution of electron density along the axial direction in the hydrogen discharge at a fixed radial position 

r=0cm, for different power densities, where the substrate is situated at the position z=0cm. As shown, the electron density 

increases at the first, reaches it is maximum at the center of the discharge and then vanishes near the edge of the plasma [17]. 

 

Fig. 5. Axial profile of electron density for different power densities at r = 0 cm 

The radial profile of electron density in the discharge for different power densities are shown in fig.6. We see that the 

electron density decreases from its maximum values at the center to a minimum value at the edge of the plasma volume. 
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Fig. 6. Radial Profile of electron density for different power densities at z=2cm 

The fig.7 shows the evolution of both ion and electron densities as a function of the pressure of the hydrogen gas within 

the reactor. 

 

Fig. 7. Maximum densities of electrons and ions for incident power of 2.5kW 
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We see that the maximum values of the electron and ion density increases with increasing gas pressure. And the maximum 

value of the electron density is almost the same as the ion density at a given pressure and power value. 

8 CONCLUSION 

In this paper, a fluid plasma model is presented to describe the hydrogen microwave plasma discharge characteristics by 

solving the electron and ion continuity equations, momentum transport equation and the Poisson’s equation. 

The Newton-Raphson method is applied in order to solve the nonlinear equations. We have focused on distributions of 

electrons number density to provide information on the characteristics of hydrogen plasma. In other hand we tried to compare 

the maximum electron density with the maximum ion density for different values of pressure and constant incident power. 

The distribution of electrons density is obtained for various conditions of power and pressure. The simulations results show 

a strong effect of gas pressure and power density on the plasma density. 
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