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ABSTRACT: Soil nutrient analysis is crucial for understanding the dynamics of agricultural fertility and productivity. Phosphorus (P) stands 

out among soil nutrients for its fundamental role in vital biological processes such as photosynthesis, respiration, and cell division. The 
study of variations in phosphorus content along toposequences, according to the specific topography of the lowlands, is proving to be a 
relevant approach to elucidate the complex interactions between abiotic factors and biogeochemical dynamics that govern soil fertility. 
This study aims to characterize spatial variations in soil assimilable phosphorus (P2O5) content as a function of edaphic parameters, using 
a multidimensional approach along the longitudinal and transverse axes of the lowland. This study was carried out in the locality of 
N’Zoupouri, in the department of Botro, about 40 km from Bouaké, in the Gbêkê region of central Côte d’Ivoire. The physicochemical 
analyses of the soil samples were carried out by French and international standard methods. The BORUTA algorithm used in this study 
can select the truly significant characteristics while ranking their importance. The result shows that potassium (K) content is a determining 
factor directly influencing this essential nutrient’s spatial variations and temporal changes. The close relationship between potassium 
and phosphorus in the soil highlights the importance of optimized agronomic management, in which potassium not only plays a 
supporting role but also acts as a key element in the release and stabilization of phosphorus that is available to plants. 

KEYWORDS: soil nutrients, phosphorus, lowland, statistical learning, Côte d’ivoire. 

1 INTRODUCTION 

Soil nutrient analysis is crucial for understanding the dynamics of agricultural fertility and productivity [1]. By providing an accurate 
estimate of the stock of potentially available nutrients, this analysis allows not only to adapt fertilization practices to the specific needs 
of crops but also to optimize yields while minimizing negative environmental impacts ([2], [3]). Such an approach is essential for the 
development of sustainable soil management strategies, which are essential for resilient and efficient agriculture [4]. 

Phosphorus (P) stands out among soil nutrients for its fundamental role in vital biological processes such as photosynthesis, 
respiration, and cell division [5]. In tropical soils, however, the availability of this nutrient is often severely limited by a variety of abiotic 
factors. Among these, the intense fixation of phosphorus by clay minerals, the consequent losses due to leaching under the effect of high 
rainfall, and the low organic matter content pose major challenges to its effective management [6]. These challenges are particularly 
acute in tropical lowlands, where hydrological and sedimentological characteristics create distinct environmental gradients that influence 
the spatial distribution and availability of nutrients [7]. 

In this context, the study of variations in phosphorus content along toposequences, according to the specific topography of the 
lowlands, is proving to be a relevant approach to elucidate the complex interactions between abiotic factors and biogeochemical 
dynamics that govern soil fertility. The use of the Random Forest method, a robust statistical learning technique based on the aggregation 
of multiple decision trees, offers significant analytical power for exploring these interactions due to its ability to handle non-linearities 
and complex interactions between variables [8]. 

This study aims to characterize spatial variations in soil assimilable phosphorus (P2O5) content as a function of edaphic parameters, 
using a multidimensional approach along the longitudinal and transverse axes of the N’Zoupouri lowland. This methodology aims to 
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identify spatial patterns and potential correlations between these variables, thus providing essential information for optimized soil 
management in tropical wetlands. Through this analysis, the study aims to contribute to the development of more sustainable and 
resilient agricultural strategies. The depth of the multi-dimensional soil analysis thus appears crucial for an advanced understanding of 
the mechanisms underlying soil fertility and soil health, especially in environments as complex as the lowlands of N’Zoupouri. The 
expected results should broaden the prospects for integrated and sustainable management of edaphic resources in these fragile 
ecosystems. 

2 MATERIALS AND METHODS 

This study was carried out in the locality of N’Zoupouri, in the department of Botro, about 40 km from Bouaké, in the Gbêkê region 
of central Côte d’Ivoire (Figure 1). The geographical coordinates of the study site are 07°50’31” north latitude and 05°18’24” west 
longitude. The region has an average annual temperature of 26.1°C and an average annual rainfall of 899.6 mm [9]. The soils of Botro 
are characterized by their depth and low gravel content (<30%), with a ferruginous texture typical of tropical soils. 

2.1 DATA COLLECTION 

A 100 m long north-facing baseline (L1N150/100 m) was laid longitudinally to the watercourse, above the hydromorphic zone. Every 
20 meters, secondary tracks were laid transversely to allow systematic sampling. A total of 93 soil samples were collected at regular 20-
meter intervals along these secondary paths. 

2.2 ELEMENTAL ANALYSIS 

The physicochemical analyses of the soil samples were carried out by French and international standard methods, particularly about 
sample storage conditions (ISO 18512). The pH was measured by mixing 20 g of soil with distilled water in a ratio of 1: 2.5 (ISO 10390). 
Granulometric analysis by sedimentation using the pipette method on an automatic granulometer. Total carbon (C) and total nitrogen 
(N) were determined by combustion (ISO 10694), while available phosphorus (P) was measured by the Olsen method (NF ISO 11263). 
Exchangeable cations (calcium (Ca), potassium (K), magnesium (Mg), and sodium (Na)) were extracted by the cobaltihexamine method 
(NF X 31-130) and quantified by inductively coupled plasma optical emission spectrometry (ICP-OES) (ISO 22036). Iron (Fe) was extracted 
with aqua regia according to ISO standard NF 11466 and its concentration was also measured by ICP-OES (NF EN 13651). 

2.3 APPLICATION OF THE BORUTA ALGORITHM 

The study of the physicochemical characteristics of the soils, including variables such as pH, texture (clay, silt, sand), organic carbon, 
nitrogen, assimilable phosphorus, exchangeable cations (Ca, Mg, Na) and iron, reveals a large variability influencing the dynamics of soil 
properties along the Bandama River at N’Zoupouri. This variability requires a robust method to identify the relevant properties among 
those studied. The BORUTA algorithm [10] used in this study can select the truly significant characteristics while ranking their importance. 

The BORUTA algorithm is based on the use of Random Forests, a powerful statistical learning model for classification and regression 
based on a set of independent decision trees. This ‘wrapper’ type algorithm adds ‘shadow features’ whose values are randomly 
permuted to eliminate any correlation with the decision variable, to assess the relevance of the features. The importance of each feature 
is calculated by measuring the loss of classification accuracy caused by these random permutations, expressed as a Z-score obtained by 
dividing the average loss by its standard deviation. The maximum Z-score (MZS) among the shaded features is used as a reference to 
classify the features into three categories: confirmed, pending, and rejected [10]. 

The relevant features identified by the BORUTA algorithm were then used to develop a prediction model using regression models 
such as simple linear regression (SLR) and multiple linear regression (MLR). Model performance was assessed using metrics such as 
coefficient of determination (R2), mean bias error (MBE), coefficient of variation of the root mean square error (CV RMSE), and mean 
absolute percentage error (MAPE) to ensure robust predictions and exclusion of non-significant variables. 

2.4 STATISTICAL ANALYSIS 

The experimental data were subjected to unifactorial analysis of variance (ANOVA) after validation of the previous application 
conditions. The Shapiro-Wilk test was used to check the normality of the residuals, while the Levene test was used to check the 
homogeneity of the variances. When a significant difference was found between the means, the Fischer LSD post-hoc test was used at a 
5% significance level to perform pairwise comparisons, allowing the identification of homogeneous groups. All statistical analyses were 
performed using R software, version 4.3.3. 
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3 RESULTS 

Tableau 1. Characteristics of factors influencing the dynamics of lowland soil properties along the Bandama River at N’Zoupouri 

Var Topog Long Min. Max. Moy. CV* 

pHH2O 

BF 
Amont 5,5 6,9 5,99 5,92 
Avale 5,6 7 6,36 5,94 

Médiane 5,6 6,4 6,09 4,38 

Hydro 
Amont 6 6,8 6,43 4,25 
Avale 5,9 7,2 6,54 7,38 

Médiane 5,7 7,1 6,6 7,37 

pHKCl 

BF 
Amont 4,5 5,9 4,89 7,17 
Avale 4,3 6,2 5,39 9,68 

Médiane 4,3 5,2 4,82 6,86 

Hydro 
Amont 5,2 6,2 5,68 7,5 
Avale 4,8 6,6 5,7 10,58 

Médiane 4,5 6,7 5,7 11,9 

Clay 

BF 
Amont 22,37 66,71 48,84 26,25 
Avale 17,53 59,26 39,12 29,43 

Médiane 27,08 52,1 40,97 17,57 

Hydro 
Amont 14,04 57,45 23,19 72,8 
Avale 13,35 37,91 19,87 35,97 

Médiane 10,66 34,39 19,01 34,37 

Silt 

BF 
Amont 26,57 46,85 36,1 14,28 
Avale 29,39 50,34 38,96 18,01 

Médiane 27,19 39,27 34,37 12,21 

Hydro 
Amont 31,66 39,18 36,32 8,21 
Avale 25,81 40,62 32,97 14,97 

Médiane 24,16 41,12 33,85 14,88 

Sand 

BF 
Amont 3,6 36,07 15,06 72,98 
Avale 9,55 40,32 21,92 44,91 

Médiane 15,17 37,73 24,67 29,18 

Hydro 
Amont 6,96 54,3 40,49 41,84 
Avale 36,29 59,32 47,16 16,33 

Médiane 40,85 55,07 47,14 11,85 

K 

BF 
Amont 0,14 1,13 0,7 45,92 
Avale 0,16 2,72 0,65 92,75 

Médiane 0,16 0,98 0,52 46,91 

Hydro 
Amont 0,29 0,93 0,45 53,2 
Avale 0,18 10,79 1,6 194,12 

Médiane 0,24 9,15 1,15 220,18 

Fe 

BF 
Amont 167,48 533,17 346,1 29,67 
Avale 38,12 24564,94 1805,3 336,26 

Médiane 150,64 407,4 349,37 24,04 

Hydro 
Amont 28,58 415,26 133,88 114,35 
Avale 33,06 24150,1 2385,95 302,57 

Médiane 19,6 370,44 208,79 52,06 

N 

BF 
Amont 0,04 0,14 0,08 36,64 
Avale 0,03 0,71 0,19 94,81 

Médiane 0,01 0,25 0,13 65,92 

Hydro 
Amont 0,05 0,14 0,08 41,34 
Avale 0,06 0,31 0,16 58,36 

Médiane 0,02 0,13 0,06 47,2 

C BF 
Amont 0,9 4,84 2,19 52,27 
Avale 0,7 4,22 2,14 42,52 

Médiane 0,64 2,34 1,35 38,37 
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Hydro 
Amont 0,7 2,24 1,42 37,24 
Avale 0,71 3,88 2,17 54,78 

Médiane 0,48 2,2 1,28 40,55 

P2O5 

BF 
Amont 1 16 4,73 77,61 
Avale 1 18 6,19 86,37 

Médiane 1 11 4,89 86,45 

Hydro 
Amont 1 6 2,67 65,67 
Avale 1 19 5 113,14 

Médiane 1 5 1,92 56,54 

Ca 

BF 
Amont 4,18 11,1 6,96 27,04 
Avale 4,32 15,33 7,77 41,83 

Médiane 3,1 10,16 6,1 40,79 

Hydro 
Amont 2,76 9,3 5,44 49,16 
Avale 0 15,93 6,86 69,1 

Médiane 2,58 8,5 5,74 29,98 

Mg 

BF 
Amont 0,46 5,46 3,03 44,4 
Avale 1,74 10,43 4,74 55,77 

Médiane 2,03 6,64 3,7 39,39 

Hydro 
Amont 1,25 4,72 2,33 52,97 
Avale 1,06 10,78 4,69 62,74 

Médiane 0,96 3,04 2,19 25,99 

Na 

BF 
Amont 0,09 0,14 0,12 12,53 
Avale 0,08 0,22 0,14 31,59 

Médiane 0,1 0,15 0,13 13,44 

Hydro 
Amont 0,06 0,15 0,08 46,09 
Avale 0,06 0,31 0,14 51,02 

Médiane 0,06 0,1 0,07 18,53 

3.1 CORRELATION BETWEEN SOIL CHARACTERISTICS 

 

Fig. 1. Correlogram of soil characteristics studied along the toposequences, with Pearson significance level 
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3.2 LONGITUDINAL VARIATION OF SOIL P2O5 AT UPSTREAM EXPOSURE 

In Table 2, the BORUTA algorithm answered the importance of the features in the dataset. Of the 11 features, seven were rejected 
and one was confirmed. Three features were marked as uncertain. The uncertain features have values so close to their best shadow 
features that BORUTA is unable to make decisions with the desired confidence in the default number of random forest runs. 

The resulting graph, generated using the BORUTA package in the R environment, shows the importance (y-axis) of the analyzed 
features (placed on the x-axis) by ranking and color-coding them after feature classification (Figure 2). 

Tableau 2. Selection of soil characteristics influencing upstream assimilable phosphorus content 

Varind MoyImp medianImp MinImp MaxImp NormHits Decision 

K 4,51 4,52 2,43 6,45 0,84 Confirmed 
Mg 3,06 3,09 -0,2 5,67 0,56 Pending 
Na 1,91 2 -2,07 3,89 0,42 Pending 
Clay 2,03 2,03 -0,22 4,61 0,43 Pending 
pHH2O -1,17 -1,54 -1,96 0,6 0 Rejected 
pHKCl -0,53 -0,46 -1,86 1,12 0 Rejected 
Silt -2,51 -2,92 -3,48 -0,71 0 Rejected 
Sand 0,37 0,55 -2,57 2,12 0,1 Rejected 
N -0,4 -0,8 -2,71 1,39 0 Rejected 
Carb 0,56 0,56 -1,01 2,13 0,03 Rejected 
Ca 1,05 1,21 -1,1 2,21 0,01 Rejected 

The columns respectively represent the independent variables, the mean of their importance (moyImp), the median of their importance (medianImp), the 
minimum importance (minImp), the maximum importance (maxImp), the number of standardised successes (normHits), and the decision for each variable 
(Confirmed, Pending or Rejected). 

From the box plots in Figure 2, the blue rectangles correspond to the shadow features. We have three blue boxes for the minimum, 
mean, and maximum values of the shadow features. The green rectangle corresponds to the feature that was confirmed as valid, while 
the red rectangles correspond to the features that were confirmed as irrelevant. The yellow rectangles correspond to the uncertain 
features, i.e. the algorithm could not conclude their importance. Based on the selection results, it can be concluded that the important 
(confirmed) feature influencing phosphorus dynamics in upstream exposure in the N’zoupri lowland is potassium (K) content. However, 
it is uncertain (but cannot be ruled out) whether characteristics such as exchangeable base content (Mg and Na) and clay content of the 
lowland have an effect on phosphorus dynamics in this lowland exposure. 



Guety Thierry Philippe, Akoto Odi Faustin, Kouamé Firmin Konan, Affi Jeanne Bongoua-Devisme, and Konan-Kan Hippolyte 
Kouadio 
 
 
 

ISSN : 2351-8014 Vol. 75 No. 1, Oct. 2024 101 
 
 
 

 

Fig. 2. Variable reduction process based on Random Forest, assessing the importance of the independent variables measured in this study on the 
N’zoupri lowland 

Shadow variables are shown in blue, variables confirmed as not important are shown in red, provisional variables are shown in yellow, 
and variables confirmed as important (relevant) are shown in green. N = nitrogen; Carb = organic carbon; Ca = exchangeable calcium, Na 
= exchangeable sodium, Mg = exchangeable magnesium, Fe = free iron. The characteristics of the box plot are as follows: the circles 
represent outliers, the dotted ‘whiskers’ correspond to 1.5 times the interquartile range, the rectangle indicates the first and third 
quartiles and the horizontal bar represents the median. 

The feature sets presented in Table 3 will help to determine whether it is necessary, when building a predictive model, to select the 
feature K identified as "confirmed" relevant by the BORUTA algorithm, or whether it is possible to limit the number of features to the 
group for which the value of the NormHits index will be greater than or equal to 0.80, and how such a limitation will affect the accuracy 
of the prediction of energy consumption. The selected features were used to build a model for predicting phosphorus dynamics in 
upstream exposure, based on test sets for Mean Absolute Percentage Error (MAPE (%)), Mean Bias Error (MBE (%)), Coefficient of 
Variation of Root Mean Square Error (CV RMSE (%)) and CV RMSE (%). CV RMSE (%)) and, where applicable, the Coefficient of 
Determination R2. 
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Tableau 3. Ensembles de caractéristiques pour les modèles prédictifs analysés 

Characteristics 
Characteristic Packages 

Set 1 Set 2 

K 1 1 
Mg  1 
Na  1 

Clay  1 

The results of the calculation of the quality and accuracy of the models built according to the selected feature set are presented in 
Table 4. A lower MAPE value indicates better prediction accuracy. Set 1 stands out with a MAPE of 1.32%, indicating very high prediction 
accuracy, and an MBE of -0.07%, showing minimal bias in the predictions. Although the CV RMSE is high (75.70%), suggesting greater 
relative variability in the predictions, the accuracy and low bias make this set particularly suitable in contexts where accurate and 
unbiased predictions are crucial. Thus, Dataset 1 (marked as ‘confirmed’ by the BORUTA algorithm) improves the fit of the model to real 
data and is recommended for applications requiring high accuracy and minimization of bias errors, despite potentially greater variability 
in predictions. 

Tableau 4. Evaluation of the prediction model of phosphorus dynamics in upstream exposure in the lowland based on the tested feature 
sets obtained by the BORUTA algorithm 

Characteristics 
Characteristic Packages 

Set 1 Set 2 

MAPE (%) 1,32 4,88 
MBE (%) -0,07 0,09 

CV RMSE (%) 75,70 23,65 

R2 (-) ∞ 0,98 

Set 2, which also includes data marked as "uncertain" by BORUTA, gives poorer predictive results (only a high CV RMSE index of 
75.70% is more favorable than in Set 1). This indicates that increasing the number of characteristics negatively affected the predictive 
quality of the model. 

There is no direct numerical comparison, as infinity is not a real number but a concept representing unbounded growth. In this 
context, we can say that 0.983 is negligible compared with infinity. The prediction results presented, based on the features selected by 
the algorithm, give significantly better results than the model built using manual feature selection based on domain knowledge. 

3.3 REGRESSION MODELS RELATED TO UPSTREAM EXPOSURE OF ASSIMILABLE PHOSPHORUS 

To adjust the evolution of assimilable phosphorus levels in upstream exposure as a function of potassium levels associated with 
important characteristics (Figure 3), simple linear regression (SLR) and second-order polynomial regression (PR^2) models are compared. 
The general equations compared are of the form:  

1. Simple linear regression (SLR): YP2O5 ~ b + a*X 

2. Polynomial regression of order 2 (RP ^2): YP2O5 ~ c + a*X2+ b*X 

The letters a, b, c, and d denote the constants of this non-linear regression. Y represents P2O5 and X is the soil characteristics 
associated with P2O5 content. 

Based on the test result, the P2O5 content of the soil at the upstream exposure is fitted to an RLS equation whose model and variable 
(K) explain the variations in P2O5 under this exposure very significantly (F (1, 19) = 6.197, p = 0.022). The model parameters of the RP ^2 
model were significantly lower (F (2, 18) = 3.293, p = 0.056). 
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Fig. 3. Adjustment model for the influence of potassium on changes in assimilable phosphorus in upstream exposure in the N’zoupri lowland 

The linear regression equation based on the estimated coefficients provided is as follows: P2O5 = b + a*Kcentred where P2O5 is the 
dependent variable (the concentration of P2O5), ‘b’ is the intercept (constant) of the model, ‘a’ is the regression coefficient associated 
with the Kcentred variable (the explanatory variable centred around its mean). By replacing with the estimated values: 
P2O5=1,19+1,07×Kcentred. This means that for each unit increase in Kcentred, the concentration of P2O5 increases by an average of 1.07 
units. The intercept β=1.19 represents the mean value of P2O5 when Kcentred =0, i.e. when K is at its mean. 

4 DISCUSSION 

Based on the results obtained, it was concluded that potassium (K) content is a determining factor influencing the dynamics of 
assimilable phosphorus (P2O5) in the alluvial plain of the N’zoupri River. Although the effect of exchangeable base contents such as 
magnesium (Mg) and sodium (Na), as well as clay content, remains uncertain, their influence on phosphorus dynamics cannot be 
completely excluded. Furthermore, the positive multifactorial interactions observed between P2O5 and other nutrients such as calcium 
(Ca), magnesium (Mg), sodium (Na), and iron (Fe) suggest that phosphorus availability can be modulated by the presence of these 
cations. These cations can either compete with phosphorus for binding sites or stabilize certain forms of phosphorus in the soil. 

As part of this study, soil surveys of topsoil (0-20 cm) were conducted to assess soil quality for growing cereals, particularly rice, 
following the example of those documented ([11], [12]). Potassium plays a crucial role in the dynamics of assimilable phosphorus, directly 
influencing its availability to plants, which is fundamental from a sustainable agriculture perspective. One of the mechanisms by which 
potassium exerts its influence is its ability to interact with other soil cations, such as calcium, magnesium, and iron (strong positive 
correlation between K and Fe, with r = 0.50, p < 0.0001), thereby altering the balance of electrical charges on the surface of soil particles. 
This process can release bound phosphorus, making it more accessible for uptake by plant roots. Potassium (K) is therefore recognized 
as one of the essential nutrients for crop growth [13]. 

The N’zoupri site is particularly important because of its arable land suitable for lowland rice production. This region, characterized 
by a high population density and a slight decrease in the area under cereals, favors optimized potassium fertilization to ensure optimal 
agricultural production ([14], [15]). In addition, the potassium present in the soil as a result of potassium fertilization can help regulate 
the enzymatic activity of roots, in particular those involved in phosphorus mobilization [16]. Thus, in the context of sustainable 
agriculture, where efficient nutrient management is paramount, adequate potassium availability can improve phosphorus use and 
reduce the need for external inputs, often from non-renewable sources. This helps to conserve natural resources and reduce 
environmental pollution caused by excess phosphorus in aquatic ecosystems. 

The significant positive correlations between K and Fe suggest a possible interaction between these elements which, although 
essential, can influence phosphorus solubility. Their combined presence could therefore modify phosphorus dynamics by solubilizing or 
fixing it, depending on the soil conditions. These results highlight the fact that the amount of potassium assimilated by plants is influenced 
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by several physicochemical soil properties. The multiple interactions identified make it possible to optimize potassium fertilization, taking 
into account the relationship between macronutrients such as nitrogen, potassium, and phosphorus [17]. Excessive potassium 
fertilization does not necessarily increase cereal yields but can lead to wasted resources and low use efficiency [18]. These interactions 
play an important role in soil development, both horizontally and vertically [19]. 

This study investigated the dynamics of assimilable phosphorus in soils of central Côte d’Ivoire to understand spatial variations and 
temporal changes over recent decades. Assimilable P2O5 at depths from 0 to 20 cm was studied after evaluating the performance of a 
widely used prediction technique: random forest [20]. 

5 CONCLUSION 

In this study aimed at understanding the dynamics of assimilable phosphorus (P2O5) under upstream exposure in soils of central Côte 
d’Ivoire, it appears that potassium (K) content is a determining factor directly influencing spatial variations and temporal changes of this 
essential nutrient. The close relationship between potassium and phosphorus in the soil highlights the importance of optimized 
agronomic management, in which potassium not only plays a supporting role but also acts as a key element in the release and 
stabilization of phosphorus that is available to plants. 

In the context of sustainable agriculture, the research highlights the importance of monitoring and regulating potassium levels in soil 
management practices to maximize phosphorus availability while reducing the environmental impacts associated with excessive 
fertilization. By integrating this knowledge into fertilization strategies, it is possible to promote a more resilient and efficient agriculture, 
able to adapt to the challenges posed by longitudinal and lateral soil variations, while meeting the growing demands of sustainable food 
production. 
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