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ABSTRACT: The problem of controlling the chaotic permanent magnet synchronous motor (PMSM) is addressed. Based on the 

Lyapunov stability theory, a state feedback controller is designed to make the system states track desired references even 
when the system exhibits chaotic behavior. Both cases of certain and uncertain systems are considered. System 
performances are maintained in spite of parametric uncertainties. Numerical simulations are then presented to show the 
effectiveness of the proposed controller.  
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1 INTRODUCTION 

Permanent Magnet Synchronous Motors (PMSM) are very popular in various industrial applications due to their 
numerous advantages including mechanical robustness, high power density and low maintenance cost [1], [2]. Many control 

techniques are applied to PMSM such as PI control [3], [4], sliding mode control [5], [6], [7] H control [8], [9] adaptive 

control [10], [11], passivity control [2], [12], fuzzy control [13], [14], fractional order control [15], [16] and finite-time stability 
theory [17], [18].  

Some of the above references ([2], [10], [12], [13], [14], [17] and [18]) are focused on a particular configuration of the 
PMSM in which the system exhibits a chaotic behavior. Chaos is, in fact, a phenomenon that affects many electrical systems 
such as PMSM and can lead to the instability of the motor and the collapse of the drive system [7].  
Since 1980, Kuroe and Hayashi [19] studied chaos in motor drives with parameters fall into a certain domains. More details 
about chaos in electric drive systems can be found in [20].  

Recently, chaos control and synchronization in electrical systems has emerged as a new area of research. 
In this paper, the problem of speed control of chaotic PMSM is addressed based on Lyapunov stability theory. The controller 
designed must guarantee a good reference tracking for the system states in spite of parameter uncertainties. The proposed 
controller is validated through numerical simulations. 

The paper is organized as follows: in Section 2, the mathematical model of the permanent magnet synchronous motor is 
derived. In Section 3, controller design method is presented in case of certain and uncertain systems. Finally, numerical 
simulations are given in Section 4, followed by a conclusion. 

2 PERMANENT MAGNET SYNCHRONOUS MOTOR MODEL  

A permanent magnet synchronous motor with a smooth air gap can be described in the d-q frame as follows [21]. 
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where di and qi  are the d-q axes currents,  is the angular velocity of the motor. du and qu  are the d-q axes voltages and 

LT
  is the external load torque.  and   are system parameters. 

After an operating period, the external inputs of the systems are supposed to be set to zero, such that du = qu  = LT
 . 

The system becomes unforced. 
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The study of the system (2) indicates three equilibrium points and a chaotic behavior exhibited when its parameters fall 

into a specific area [21]. Fig. 1 illustrates the chaotic attractor of the PMSM for ( , ) (20,5.45)   and initial conditions

0 0 0( , , ) (0.5, 0.6,0.5)d qi i    . 

 

Fig. 1. The chaotic attractor of the PMSM system 

 

The equilibrium point (0,0,0)  is locally stable whereas the two others, namely ( 1, 1, 1)      and

( 1, 1, 1)       , are locally unstable [21].   

Let * * *( , , )d qi i  denotes an equilibrium point. The aim of this paper is to design a controller that stabilizes the system (2) 

to the equilibrium point * * *( , , )d qi i 
 
and guarantees chaos suppression. 

For this purpose, a single controller u  is added to the system. 
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For the tracking error vector e , 1 2 3[ , , ]Te e e e , defined such that 
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the dynamic error equations of the system can be expressed by 
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For any equilibrium point * * *( , , )d qi i  of the system, it comes 
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then the reduced dynamic error equations     
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The convergence of the PMSM system states to the equilibrium point * * *( , , )d qi i   is then reached if the dynamic errors 

are stabilized at zero. The controller design allowing to stabilize the dynamic error system (7) to zero is discussed in the next 
section.  

3 CONTROLLER DESIGN 

In this section, controller design is performed for the chaotic PMSM system. Two cases are considered: when system 
parameters are fixed to their nominal values and when the model of the system is affected by parametric uncertainties. 

3.1 CONTROL OF THE NOMINAL SYSTEM  

When uncertainties are neglected, the dynamic error system (7) is globally asymptotically stable if the control law in the 

next theorem is applied. That means that system (3) can be stabilized at the equilibrium point * * *( , , )d qi i  considered as a 

tracking reference for the system states.  

Theorem 1: The chaotic system (7) is globally asymptotically stable if the following nonlinear control law 0u  is applied 

0 0 2 3( 1)u k e e     (8) 

 where 0k is a nonnegative number.  

Proof: Let the quadratic Lyapunov function ( )V e defined by   
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The time derivative of this function along the trajectories of system (3) is 
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and can be simplified to 
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By substituting the control law (8), it comes 
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which implies that the studied system is stable.  

3.2 CONTROL OF THE UNCERTAIN SYSTEM 

To take account of the parametric uncertainties, the system parameters  and  are supposed to lie within intervals 

centered around nominal values 0 and 0 : 
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and can, therefore, be expressed as 
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Using the above notations for the uncertain parameters, the dynamic error equations (5) become 
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In order to guarantee the convergence of the system states to their desired trajectories * * *( , , )d qi i  , a controller is 

designed according to the following result. 

Theorem 2: If the uncertain parameters are such that  

0 0 14( ) 1      (17) 

then the chaotic system (16) is globally asymptotically stable if the following nonlinear control law u  is applied 
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       where  0k  and 1k are real numbers such that 0 0k  and 1 1k   and sgn is the function sign defined by 
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Proof: Consider the same Lyapunov function ( )V e defined by (9). 

The time derivative of ( )V e is: 
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where 0 ( )W e  is the time derivative of the Lyapunov function of (11) and 1( )W e is given by 
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Note that here, the control law u in (20) is expressed as 0 1u u u  . 

By substituting expressions of 0u (theorem 1) and 1u (theorem 2), one can obtain 
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Consequently,  ( ) 0V e  and system (16) is globally asymptotically stable for the considered control law. 

4 SIMULATION RESULTS 

In this section, numerical simulations are performed in order to verify the effectiveness of the proposed control laws. 
All simulations are curried out using the 4

th
 order Runge-Kutta method with a step size of 0.01 second and considering the 

same initial conditions (1, 2,0.7) . The considered reference is the equilibrium point * * *( , , ) ( 1, 1, 1)d qi i        . 

Control is activated at time equal to 5 seconds. 

Fig. 2 shows the dynamic error system states considering nominal values 0 0( , ) ( , ) (20,5.45)     of PMSM. The used 

value for the constant gain is 0 10k  . 

 

 

Fig. 2. Evolution of the dynamic errors for controlled PMSM system without considering uncertainties 
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Fig.3 shows the dynamic errors of the controlled PMSM system for different values of the uncertain parameters. 

Referring to the parametric uncertainty description detailed in (15), the used simulation parameters are 1 1( , ) (10,0.7)  

and ( , ) {( 1, 1), ( 1,1), (1, 1), (1,1), (0,1)}        . The control gains are fixed to 0 1( , ) (10,5)k k  .  

 

 

Fig. 3. Evolution of the dynamic errors for controlled PMSM system considering uncertain parameters 

Both figures show that the proposed controllers are able to ensure chaos suppression. Moreover, system states can 

stabilize to the equilibrium point despite the presence of parameters uncertainties.  

5 CONCLUSION 

In this paper, control of chaos in a PMSM system is addressed. Based on the Lyapunov stability theory, controllers are 
designed and successfully applied to the chaotic PMSM system. The controllers are applied with or without considering 
uncertainties in system parameters. In both cases, system states are stabilized to the desired trajectories. Furthermore, the 
proposed structure is simple and easy to implement and can therefore be tested experimentally.   
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